

BESA HIU Test Report T3 ECO PLUS HIU

Carried out for Switch2 Energy Ltd.

Report 61535/1

Compiled by Colin Judd

27 November 2019

www.bsria.co.uk

This page is intentionally left blank

Page 2 of 36 Report 61535/1 © BSRIA

BESA HIU Test Report

T3 ECO PLUS HIU

Carried out for:	Switch2 Energy Ltd. The Waterfront Salt Mills Road Shipley, West Yorkshire BD17 7EZ UK
Contract:	Report 61535/1
Issued by:	BSRIA Limited Old Bracknell Lane West Bracknell Berkshire RG12 7AH UK
Telephone:	+44 (0)1344 465600
Fax:	+44 (0)1344 465626

Email: bsria@bsria.co.uk Website: www.bsria.co.uk

QUALITY ASSURANCE

Issue	Date	Compiled by:	Approved by:	Signature
Final	27-Nov-2019	Colin Judd	Tom Garrigan	\square
		Senior Test Engineer	Business Manager	(La)

DISCLAIMER

This Document must not be reproduced except in full without the written approval of an executive director of BSRIA. It is only intended to be used within the context described in the text.

This Document has been prepared by BSRIA Limited, with reasonable skill, care and diligence in accordance with BSRIA's Quality Assurance and within the scope of our Terms and Conditions of Business.

This Document is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the Document at its own risk.

CONTENTS

1	INTRO	DUCTION	6
2	ITEM	RECEIVED FOR TEST	6
3	APPR	DACH	9
	3.1	Abbreviations	9
	3.2	Instrumentation used	10
4	APPR	DACH	11
	4.1	Uncertainty budget	12
	4.2	Tests 1a to 1f	12
	4.3	Tests 2a and 2b	12
	4.4	Tests 3c and 3d	12
	4.5	Tests 4a and 4b	12
	4.6	Test 5a and 5b	12
	4.7	Test set up	13
5	TEST I	RESULTS	16
	5.1	Pressure test – 0a	16
	5.2	Static testing – 1a, 1b, 1c, 1d, 1e and 1f	16
	5.3	Dynamic testing of the HIU operation – 2a and 2b	17
	5.3.1	Test 2a	17
	5.3.2	Test 2b	
	5.4	Low flow DHW tests – 3c and 3d	
	5.4.1	Test 3c	
		Test 3d	
	5.5	Keep warm tests – 4a and 4b	
	5.5.1	Test 4a	-
		Test 4b	
	5.6	DHW response time – 5a and 5b	
	5.6.1	Test 5a	
		Test 5b	
	5.7	Total scaling risk assessment	
	5.8	Volume Weighted Average Return Temperature	20

FIGURES

Figure 1	T3 ECO PLUS HIU installed in the test rig	8
Figure 2	Schematic of the test rig layout.	11
Figure 3	Results for test 1a: 1kW Space heating – DH 70°C supply	21
Figure 4	Results for test 1b: 2kW Space heating – DH 70°C supply	22
Figure 5	Results for test 1c: 4kW Space heating – DH 70°C supply	23
Figure 6	Results for test 1d: 1kW Space heating – DH 60°C supply	24
Figure 7	Results for test 1e: 2kW Space heating – DH 60°C supply	25
Figure 8	Results for test 1f: 4kW Space heating – DH 60°C supply	26
Figure 9	Results for test 2a: DHW dynamic test – DH 70°C	27
Figure 10	Results for test 2b: DHW dynamic test – DH 60°C	28
Figure 11	Results for test 3c: Low flow DHW test – DH 70°C	
Figure 12	Results for test 3d: Low flow DHW test – DH 60°C	30
Figure 13	Results for test 4a: Keep warm test – DH 70°C supply	31
Figure 14	Results for test 4b: Keep warm test – DH 60°C supply	32
Figure 15	Results for test 5a: DHW response time – DH 70°C supply	33
Figure 16	Results for test 5b: DHW response time – DH 60°C supply	34

TABLES

Table 1	Manufacturer supplied data	. 6
Table 2	HIU Component list	. 7
Table 3	Abbreviations used	. 9
Table 4	Instrumentation used	10
Table 5	Uncertainty budget	12
Table 6	Test setup as given in the test regime	13
Table 7	Test reporting structure as given in the test regime	14
Table 8	Results from the static tests	16
Table 9	Primary/secondary duty balance	16
Table 10	Total scaling risk assessment	20

APPENDICES

APPENDIX A:	Data Charts	21
APPENDIX B:	VWART Calculations	35

1 INTRODUCTION

BSRIA carried out a series of tests on one heat interface unit (hiu), the T3 ECO PLUS HIU, manufactured by Switch2 Energy Ltd. Testing was carried out in accordance with the UK HIU Test Regime, October 2018. The test method covers testing one HIU at a primary inlet temperature of 70°C and 60°C. The HIU was a combined low temperature hot water (LTHW) and domestic hot water (DHW) unit.

This report is based on one sample of the above-mentioned product. Testing was carried out during August/September 2019. Charts of outputs obtained from this series of tests are shown in Appendix A of this report.

2 ITEM RECEIVED FOR TEST

The HIU received for testing was a Switch2 Energy Ltd. T3 ECO PLUS HIU. This was a combined LTHW and DHW unit. The HIU was designed for both wet radiator systems and underfloor heating (UFH) systems. The test regime requires that the HIU is tested at two primary inlet temperatures, 70°C for wet radiator systems and 60°C for UFH systems. Table 1 gives details of the HIU tested.

Description	Data
Model	T3 ECO PLUS HIU
Serial Number	S2HIU19001065
Software version	1.000
Height	646 mm
Width	500 mm
Depth	265 mm
Total unit weight	23.5 kg (including cover) + 11.5 kg for FFJ
Maximum DHW output	75 kW (manufacturer supplied data)
Maximum central heating output	15 kW (manufacturer supplied data)
Maximum primary supply temperature	90°C
Recommended minimum DP	50 kPa
Maximum working pressure primary side	16 bar
Maximum working pressure DHW side	10 bar
Safety relief valve setting secondary heating side	3 bar
Expansion vessel capacity	8 Litres
Ball valve connections	3⁄4 "
Safety relief valve connection	1/2 "
Electrical power supply voltage	230 V
Frequency	50 Hz

Table 1 Manufacturer supplied data

Table 2 gives a component list for the HIU as supplied by the Client.

Table 2HIU Component list

Description	Manufacturer				
Space Heating Heat Exchanger	Swep B8LAS – Part no. 0800050				
Domestic Hot Water Heat Exchanger	Danfoss XB06 – Part no. 0800052				
Controller for Space Heating	Switch2 0900013				
Control Valve and Actuator for Space Heating	Honeywell VSMF valve – Part no. 0800057 Actuator – Part no. E1110000				
Space Heating Strainer	N/A				
Controller for Domestic Hot Water	Switch2 – Part no. 0900013				
Power Supply for Controller	Switch2 – Part no. – 0900014				
Control Valve and Actuator for Domestic Hot Water	Frese Optima Compact – Part no. 0800054 Actuator – Part no. E1110000				
Temperature Sensors	Tasseron – Part no. 0900011				
Domestic Hot Water Isolating Valve	Airaga 362 3/4" MM part no. 0208206				
Primary Side Strainer	Switch2 – Part no. 0800022				
Drain Valves	Embrass – Part no. 700555				
Vent Valves	Switch2 – Part no. 0800022				
Circulation Pump set with AAV & PRV	Wilo Yonos Para MSL7.0 – Part no.0800041				
Heat Meter	Landis & Gyr T230 – Part no.4102015				
Domestic Hot Water Flow Sensor	Honeywell C7195B – Part no.0800063				
Pipes	Switch2 0800040				
Connections	Switch2 0800025-28				
Joints	Eriks EPDM SSL				
Gaskets	Novus 20 – Part no.0800082				
Expansion Vessel	Zilmet OEM-PRO 8L – Part no.1100407				
Insulation	Switch2 – Part no. 0900012				
Pressure Sensors	Huba 505 – Part no.0800059				
'O' Ring	Eriks EPDM SSL – Part no.0800073,75,134				
Declaration of Conformity for CE-marked HIUs					
Maximum primary static operating differential pressure.	6 Bar				

Figure 1 shows the T3 ECO PLUS HIU installed in the test rig with the cover removed. A photograph of the name plate is also included.

Figure 1 T3 ECO PLUS HIU installed in the test rig

3 APPROACH

3.1 ABBREVIATIONS

The abbreviations given in Table 3 are used throughout this report.

Table 3 Abbreviations used

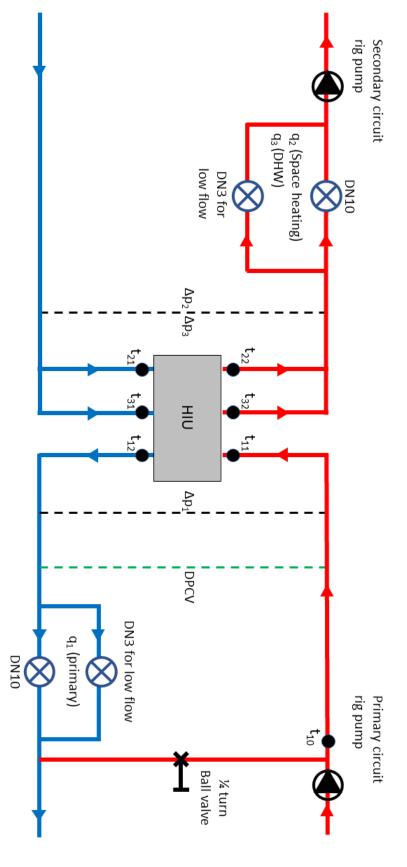
Abbreviation	Parameter	Units
DH	District Heating	-
SH	Space Heating	-
CWS	Cold Water Supply	-
P ₁	Heat load – primary side	[kW]
P ₂	Heat load – space heating system	[kW]
P ₃	Heat load – domestic hot water	[kW]
t ₁₀	Temperature at DH supply upstream of 9m HIU supply pipework	[°C]
t ₁₁	Temperature – primary side flow connection	[°C]
t ₁₂	Temperature – primary side return connection	[°C]
t ₂₁	Temperature – space heating system return connection	[°C]
t ₂₂	Temperature – space heating system flow connection	[°C]
t ₃₁	Temperature – cold water supply	[°C]
t ₃₂	Temperature – domestic hot water flow from HIU	[°C]
q ₁	Volume flow – primary side	[l.s ⁻¹]
q ₂	Volume flow – space heating system	[l.s ⁻¹]
q ₃	Volume flow – domestic hot water	[l.s ⁻¹]
Δp ₁	Primary pressure drop across entire HIU unit	[bar]
Δp ₂	Pressure drop – space heating system across HIU	[bar]
Δp ₃	Pressure drop – domestic hot water across HIU	[bar]
VWARTDHW	DHW Volume Weighted Average Return Temperature	[°C]
VWART SH	Space Heating Volume Weighted Average Return Temperature	[°C]
VWART _{KWM}	Keep-warm Volume Weighted Average Return Temperature	[°C]
VWARTHEAT	Annual Volume Weighted Average Return Temperature for Heating Period	[°C]
VWARTNONHEAT	Annual Volume Weighted Average Return Temperature for Non-Heating	[°C]
VWARTHIU	Total Annual Volume Weighted Return Temperature	[°C]
SHPROP	Annual Heating Period	-
NSH _{PROP}	Annual Non-Space Heating Period	-
DH	District Heating (primary) circuit	-
SH	Space Heating circuit	-
CWS	Cold Water Supply	-
DHW	Domestic Hot Water	-
TMV	Thermostatic Mixing Valve	-
TRV	Temperature Regulating Valve	-
UFH	Under Floor Heating	-

3.2 INSTRUMENTATION USED

Table 4 shows details of the instrumentation used for the tests.

Table 4 Instrumentation used

Instrument	Manufacturer	Range	Units	ID No.	Calibration Due
Keysight logging system	Keysight	N/A	N/A	1595	N/A
Platinum Resistance Thermometers (PRTs)	Anville Sensors Ltd	-10 – 95	°C	1596	17-04-20
Static pressure transducer Primary circuit for all tests	Fuji Electric	0-10	Bar	1592	10-06-20
Static pressure transducer Secondary circuit for all tests	Fuji Electric	0 – 10	Bar	1593	11-06-20
ET7026 logger	IPC	-	-	1685	N/A
Platinum Resistance Thermometers (PRTs)* Used for measuring the inlet/outlet parameters during the testing	TC Ltd	1 – 90	°C	1685	05-11-19
Platinum Resistance Thermometer (PRT)	Anville Sensors Ltd	1-90	°C	1685	05-11-19
Flowmeter – DH circuit Space heating tests – (1a – 1f)	Siemens	0-0.07	l.s⁻¹	2961	09-01-20
Flowmeter – SH circuit Space heating tests – (1a – 1e)	Siemens	0 – 0.07	l.s⁻¹	1678	10-06-20
Flowmeter – SH circuit Space heating tests – (1f)	Siemens	0 – 0.2	l.s⁻¹	685	10-01-20
Flowmeter – DH circuit Dynamic tests – (2a, 2b, 3c,3d) DHW response time tests – (5a,5b)	Siemens	0-0.2	l.s ⁻¹	685	10-01-20
Flowmeter – DHW circuit Dynamic tests – (2a, 2b, 3c,3d) DHW response time tests – (5a,5b)	Siemens	0 - 0.5	l.s ⁻¹	1544	11-06-20
Flowmeter – DH circuit Keep warm tests (4a & 4b)	Siemens	0 - 0.5	l.s ⁻¹	1544	11-06-20
Flowmeter – DHW circuit Keep warm tests (4a & 4b)	Siemens	0-0.2	l.s ⁻¹	685	10-01-20
Differential pressure transducer Primary circuit for all tests	Fuji Electric	0 – 200	kPa	2065	07-01-20
Differential pressure transducer Secondary circuit for all tests	Fuji Electric	0 – 200	kPa	1591	10-06-20
Static pressure transducer Pressure test	Fuji Electric	0 - 30	barg	1582	25-07-20
Static pressure transducer Pressure test	Keller LEO-1	0 – 10	bar	1760	29/01/20
Stopwatch	RS	3,603.02	Secs	238	21-12-20
Tape measure	Stanley	1,000	mm	683	28-02-22


*The time constant for these temperature sensors was \leq 1.5 s.

The calibration certificates for all the instrumentation used during this series of tests are available on request from BSRIA (test@BSRIA.co.uk).

4 APPROACH

Figure 2 shows a schematic of the test rig layout.

Figure 2 Schematic of the test rig layout.

Page 11 of 36 Report 61535/1 © BSRIA

4.1 UNCERTAINTY BUDGET

The uncertainty of measurement given in the test regime is shown in Table 5.

Table 5 Uncertainty budget

Parameter	Required Uncertainty	BSRIA Uncertainty		
Static pressure	±10 kPa	±0.65 kPa		
Differential pressure, district heating	Not supplied	±0.06 kPa		
Differential pressure, domestic hot water	±1 kPa	±0.06 kPa		
Differential pressure, space heating	±1 kPa	±0.06 kPa		
Temperature	±0.1°C	±0.02°C		
Volume flow (≥ 0.06 l/s)	±1.5%	0.0012 l/s		
Volume flow (< 0.06 l/s)	To be specified in conjunction with each measurement	0.0006 l/s		

The uncertainty of the instrumentation used was calculated according to M3003 – The Expression of Uncertainty and Confidence in Measurement. All the instrumentation used in this series of tests was within the required uncertainty quoted above.

4.2 TESTS 1A TO 1F

Once the rig was running, the space heating tests were allowed to stabilise at the required power output for the particular test. Once stable conditions had been achieved, the test was logged at a rate of 1 Hz (i.e. 1 second) for a minimum period of 300 seconds.

4.3 TESTS 2A AND 2B

Prior to the test being carried out, the rig was running at the required stable conditions for a minimum of 120 seconds. After this period, the DHW draw off test was carried out as per the flow regime specified in the test method. The flow rates were controlled using a manifold of three control valves set to the correct flows. The data was logged at a rate of 1 Hz.

4.4 TESTS 3C AND 3D

These tests were carried out at the minimum DHW flow rate claimed by the manufacturer of 0.03 l/s. At these conditions, the unit provided stable DHW flow and temperatures.

Prior to the test being carried out, the rig was running at the required stable conditions for a minimum of 120 seconds. After this period, the DHW flow was reduced to 0.03 l/s and logged for 180 seconds at a rate of 1 Hz.

4.5 TESTS 4A AND 4B

Prior to the test being carried out, the rig was running at the required stable conditions for a minimum of 120 seconds. After this period, the DHW flow was turned off and left for a minimum of 8 hours to establish "keep warm" conditions. During this test, the primary flow was diverted through a DN3 flowmeter so that the trickle flow could be measured. The data was logged at a rate of 1 Hz throughout the duration of the 8-hour test period.

4.6 TEST 5A AND 5B

These tests were carried out while the HIU was still in "keep warm" mode after the 8-hour keep warm test. With the data still being logged at a rate of 1 Hz, the DHW flow was immediately brought back to 0.13 l/s.

Page 12 of 36 Report 61535/1 © BSRIA

4.7 TEST SET UP

Table 6 shows the setup of the tests as given in the test regime.

Table 6 Test setup as given in the test regime

Test No.	Test	static pressure on return	dP across HIU	Primary flow temp	Hot water setpoint	DHW flow rate	DHW power	space heat output	space heat flow temp	space heat return temp
		bar	bar	°C	°C	l/s	kW	kW	°C	°C
			dP1	t ₁₁	t32	qз	P ₃	P ₂	t22	t ₂₁
Static tests	5									
	Static pressure test	1.43 times								
0a	(same static pressure on both flow and return connections)	rated value		70	50	-	-	-	n/a	n/a
1a	Space Heating 1 kW	3.0	0.5	70	55	-	-	1	60	40
1b	Space Heating 2 kW	3.0	0.5	70	55	-	-	2	60	40
1c	Space Heating 4 kW	3.0	0.5	70	55	-	-	4	60	40
1d	Space Heating 1 kW	3.0	0.5	60	50	-	-	1	45	35
1e	Space Heating 2 kW	3.0	0.5	60	50	-	-	2	45	35
1f	Space Heating 4 kW	3.0	0.5	60	50	-	-	4	45	35
Dynamic to	ests									
2a	DHW only DH 70°C flow	3.0	0.5	70	55	see DHW test	see DHW test	-	60	-
2b	DHW only DH 60°C flow	3.0	0.5	60	50	profile	profile	-	45	-
3a	Low flow DHW, DH 70°C flow	3.0	0.5	70	55	0.02	Record value	-	60	-
3b	Low flow DHW, DH 60°C flow	3.0	0.5	60	50	0.02	Record value	-	45	-
3c	Low flow DHW, DH 70°C flow	3.0	0.5	70	55	0.03	Record value	-	60	-
3d	Low flow DHW, DH 60°C flow	3.0	0.5	60	50	0.03	Record value	-	45	-
4a	Keep-warm, DH 70°C flow	3.0	0.5	70	55	0	0	-	60	-
4b	Keep-warm, DH 60°C flow	3.0	0.5	60	50	0	0	-	45	-
5a	DHW response time	3.0	0.5	70	55	0.13	Record value	-	60	-
5b	DHW response time	3.0	0.5	60	50	0.13	Record value	-	45	-

Table 7 shows the reporting structure of the tests as given in the test regime. See section 5 for the full test results.

Test	Description	Reporting	Pass/Fail
		Static Tests	
0	Pressure tests	Pass/Fail as to whether HIU manages pressure test without leaks or damage.	Pass
1a	Space Heating 1 kW, 60/40°C secondary	t ₁₁ -primary flow temperature t ₁₂ -primary return temperature.	N/A
1b	Space Heating 2 kW, 60/40°C secondary	Plot of key metrics over duration of test. Note: Outputs used as input data to 'High Temperature' Space	N/A
1c	Space Heating 4 kW, 60/40°C secondary	Heating Volume Weighted Average Return Temperature calculation.	N/A
1d	Space Heating 1 kW, 45/35°C secondary	t ₁₁ -primary flow temperature t ₁₂ -primary return temperature	N/A
1e	Space Heating 2 kW, 45/35°C secondary	Plot of key metrics over duration of test. Note: Outputs used as input data to ^{'L} ow Temperature' Space	N/A
1f Space Heating 4 kW, 45/35°C secondary		Heating Volume Weighted Average Return Temperature calculation.	N/A
		Dynamic Tests	
2a	DHW only, DH 70°C flow; 55°C DHW	 Pass/Fail on DHW (at t₃₂) exceeding 65.0°C (to 1 decimal point) for more than 10 consecutive seconds. State the maximum and minimum DHW temperatures over the period of the test when there is a DHW flow. Assessment of scaling risk as per criteria detailed in 2.26. Note: Outputs used as input data to 'High Temperature' Domestic Hot Water Weighted Average Return Temperature calculation. Plot t₃₂, t₃₁, q₃, t₁₂ q₁ 	Pass
2b	DHW only, DH 60°C flow; 50°C DHW	State the maximum and minimum DHW temperatures over the period of the test when there is a DHW flow. Plot t ₃₂ , t ₃₁ , q ₃ , t ₁₂ q ₁ Note: Outputs used as input data to 'Low Temperature' Domestic Hot Water Weighted Average Return Temperature calculation.	N/A
3c	Low flow DHW, DH 70°C flow; 55°C DHW	Pass/Fail on DHW (at t ₃₂) exceeding 65.0°C (1 decimal place) for more than 10 consecutive seconds. Comment on ability to deliver DHW at low flow based on DHW temperature reaching at least 45.0°C (1 decimal place) at the end of the 180 second period of low flow DHW. Comment on ability to deliver stable DHW flow temperature (at t32), defined as ability to maintain 55.0 +/-3.0°C (1 decimal place) during the last 60 seconds of the test. Maximum temperature achieved and +/-°C variance around 55.0°C (1 decimal place) to be stated. Assessment of scaling risk as per criteria detailed in 2.26. Plot of key metrics for 60 seconds of 0.13 l/s flow and the subsequent 180 seconds of 0.03 l/s DHW flow.	Pass

Table 7	Test reporting structure as given in the test regime
---------	--

Test	Description	Reporting	Pass/Fail
3d	Low flow DHW, DH 60°C flow; 50°C DHW	Comment on ability to deliver DHW at low flow rate based on DHW temperature reaching at least 45°C (one decimal place) at the end of the 180 second period of low flow DHW. Comment on ability to deliver stable DHW flow temperature (at t32), defined as ability to maintain 50.0 +/-3°C (1 decimal place) during the last 60 seconds of the test. Maximum temperature achieved and +/-°C variance around 55.0°C (1 decimal place) to be stated. Plot of key metrics for 60 seconds of 0.13 l/s flow and the subsequent 180 seconds of 0.03 l/s DHW flow. Maximum temperature achieved and +/-°C variance around 50.0°C (1 decimal place) to be stated.	N/A
4a	Keep-warm, DH 70°C flow; 55°C DHW	Assessment of whether valid keep-warm operation, based on 5a response time criteria: Pass / Fail. Observation on the operation of the HIU during keep-warm. Assessment of scaling risk, based on duration of temperatures in excess of 55.0°C (one decimal place). Plot temperature t10. Comment on HIU keep-warm controls options. Plot of key metrics over duration of test. State average heat load for the duration of the test. State average primary flowrate for the duration of the test. Note: Outputs used as input data to 'High Temperature' Keep- warm Volume Weighted Average Return Temperature calculation.	Pass
4b	Keep-warm, DH 60°C flow; 50°C DHW	Assessment of whether valid keep-warm operation, based on 5b response time criteria: Pass / Fail. Observation on the operation of the HIU during keep-warm. Assessment of scaling risk, based on duration of temperatures in excess of 55.0°C (one decimal place). Plot temperature t10. Comment on HIU keep-warm controls options. Plot of key metrics over duration of test. State average heat load for the duration of the test. State average primary flowrate for the duration of the test. Note: Outputs used as input data to 'Low Temperature' Keep- warm Volume Weighted Average Return Temperature calculation.	Pass
5a DHW response time, DH 70°C flow;		Pass/Fail on DHW (at t_{32}) exceeding 65.0°C (1 decimal place) for more than 10 consecutive seconds. State time to achieve a DHW temperature 45.0°C (1 decimal place) and not subsequently drop below 42.0°C (1 decimal place).' Plot t_{32} , t_{31} , q_3 , t_{12} , q_1 over duration of test.	Pass
5b	DHW response time, DH 60°C flow; 50°C DHW	State time to achieve a DHW temperature 45.0°C (1 decimal place) and not subsequently drop below 42.0°C (1 decimal place). Plot t ₃₂ , t ₃₁ , q ₃ , t ₁₂ , q ₁ over duration of test.	Pass

5 TEST RESULTS

During all of the tests, the ambient temperature within the vicinity of the HIU being tested was within the tolerance of $20^{\circ}C \pm 5^{\circ}C$ as specified in the test regime. Charts of the key metrics for the thermal tests are given in Appendix A.

5.1 PRESSURE TEST – 0A

The DHW circuit and the space heating circuit were pressurised to 1.5 bar. The primary circuit was pressurised to 1.43 times the rated maximum static pressure of 16 bar (test pressure 22.88bar). This pressure was held for 30 minutes. After the 30-minute test period, the connections and fittings on the HIU were inspected for leaks and any signs of deformation. During the 30-minute period, there were no leaks or signs of deformation.

Result – Pass.

5.2 STATIC TESTING - 1A, 1B, 1C, 1D, 1E AND 1F

The following tests were carried out on the space heating circuit:

- 1a DH inlet 70°C, heating return at 40°C and a flow set to achieve 1kW heating duty
- 1b DH inlet 70°C, heating return at 40°C and a flow set to achieve 2kW heating duty
- 1c DH inlet 70°C, heating return at 40°C and a flow set to achieve 4kW heating duty
- 1d DH inlet 60°C, heating return at 35°C and a flow set to achieve 1kW heating duty
- 1e DH inlet 60°C, heating return at 35°C and a flow set to achieve 2kW heating duty
- 1f DH inlet 60°C, heating return at 35°C and a flow set to achieve 4kW heating duty

For tests 1a to 1c, the space heating outlet temperature was set to achieve 60°C in the HIU control software during the 4kw test. For tests 1d to 1f, the space heating outlet temperature was set to achieve 45°C in the HIU control software during the 4kw test. Table 8 shows a summary of the results for the static tests.

- .		District Heating Circuit				Space Heating Circuit				
Test	t11	t12	q1	Δp1	P ₁	T ₂₁	T22	Q2	Δp ₂	P ₂
	(°C)	(°C)	(I/s)	(kPa)	(kW)	(°C)	(°C)	(I/s)	(kPa)	(kW)
1a	69.98	40.47	0.009	50.22	1.11	40.00	62.18	0.011	0.22	1.02
1b	69.96	40.75	0.017	50.11	2.08	40.01	61.18	0.023	0.69	2.04
1c	70.03	40.92	0.033	50.11	4.02	39.97	60.03	0.048	2.47	4.03
1d	60.06	35.23	0.010	50.22	1.04	35.10	46.64	0.022	0.54	1.06
1e	60.05	35.12	0.020	49.98	2.08	34.98	45.22	0.048	2.41	2.05
Uncertainty	±0.019	±0.018	±0.0006	0.06	±0.07	±0.019	±0.018	±0.0006	±0.054	±0.06
1f	59.99	35.31	0.039	50.34	4.02	35.13	45.00	0.096	8.78	3.96
Uncertainty	±0.018	±0.017	±0.0006	0.06	±0.05	±0.018	±0.018	±0.0013	±0.037	±0.06

Table 8Results from the static tests

Table 9 Primary/secondary duty balance

Test	DH duty (kW)	SH duty (kW)	Balance
1a	1.11	1.02	91.89%
1b	2.08	2.04	98.08%
1c	4.02	4.03	100.25%

Test	DH duty (kW)	SH duty (kW)	Balance
1d	1.04	1.06	101.92%
1e	2.08	2.05	98.56%
1f	4.02	3.96	98.51%

5.3 DYNAMIC TESTING OF THE HIU OPERATION – 2A AND 2B

5.3.1 Test 2a

Test 2a was carried out with the DH water temperature set to 70°C and the cold-water supply to the DHW circuit at 10°C. The DHW outlet temperature was set to 55.0 (±0.5°C) prior to the test.

During test 2a:

- The DHW temperature did not exceed 65°C at any point during the test
- The maximum DHW temperature was 57.9°C
- The minimum DHW temperature was 51.9°C
- Details of the scaling risk are given in Table 10

Result – Pass

5.3.2 Test 2b

Test 2b was carried out with the DH water temperature set to 60°C and the cold-water supply to the DHW circuit at 10°C. The DHW outlet temperature was set to 50.0 (±0.5°C) prior to the test.

During test 2b:

- The maximum DHW temperature was 52.2°C
- The minimum DHW temperature was 47.6°C

Result – There is no pass/fail criteria for this test.

5.4 LOW FLOW DHW TESTS – 3C AND 3D

5.4.1 Test 3c

Test 3c was carried out with the DH water temperature set to 70°C and the cold water supply to the DHW circuit at 10°C. The DHW outlet temperature remained at the same position, set to achieve 55.0° C (±0.5°C) prior to the test. The HIU did not produce a stable DHW temperature at the flow rate required by the test regime of 0.02 l/s. Therefore, the low DHW flow was set to the manufacturers declared minimum flow rate of 0.03 l/s (1.8 l/min).

At the minimum DHW flow rate stated by the manufacturer (1.8 l/min), the unit did provide stable DHW temperature of $55^{\circ}C \pm 3^{\circ}C$ during the last 60 seconds of the test.

During test 3c:

- The DHW temperature did not exceed 65.0°C at any point during the test
- At the manufacturers stated minimum flow of 1.8 l/min, the unit did maintain a stable temperature during the test within the stated tolerance of 55.0°C ±3°C during the last 60 seconds of the test
- The DHW maximum and minimum outlet temperatures were 58.2°C and 53.2°C respectively
- Details of the scaling risk are given in Table 10

Result – Pass.

5.4.2 Test 3d

Test 3d was carried out with the DH water temperature set to 60° C and the cold water supply to the DHW circuit at 10° C. The DHW outlet temperature remained at the same position, set to achieve 50.0° C ($\pm 0.5^{\circ}$ C) prior to the test. The HIU did not produce a stable DHW temperature at the flow rate required by the test regime of 0.02 l/s. Therefore, the low DHW flow was set to the manufacturers declared minimum flow rate of 0.03 l/s (1.8 l/min).

At the minimum DHW flow rate stated by the manufacturer (1.8 l/min), the unit did provide a stable DHW temperature of $50^{\circ}C \pm 3^{\circ}C$ during the last 60 seconds of the test.

During test 3d:

- At the manufacturers stated minimum flow of 1.8 l/min, the unit did maintain a stable temperature during the test within the stated tolerance of 50.0°C ±3°C during the last 60 seconds of the test
- The DHW maximum and minimum outlet temperatures were 52.8°C and 48.9°C respectively

Result – There is no pass/fail criteria for this test.

5.5 KEEP WARM TESTS - 4A AND 4B

The keep warm function was a pulsed flow on the DH circuit as can be seen on the charts in Appendix A. The action of the keep warm mode was deemed "non-cycling" as determined by the criteria given in the test regime for the last 3 hours of the 8-hour period.

5.5.1 Test 4a

Test 4a was carried out with the DH water temperature set to 70°C and the cold water supply to the DHW circuit at 10°C. The DHW outlet temperature remained at the same position, set to achieve 55.0 (±0.5°C) prior to the test.

Based on the results for the DHW response time during test 5a, the HIU does perform a valid keep warm operation.

During the last 3 hours of the test, the average t_{11} temperature was 48.5°C with a maximum of 49.3°C and a minimum of 47.9°C

During test 4a:

- The average heat load during the 8-hour keep warm period was 34 W
- The average primary flow rate during the 8-hour keep warm period was 4.0 l/h
- Details of the scaling risk are given in Table 10

5.5.2 Test 4b

Test 4b was carried out with the DH water temperature set to 60° C and the cold water supply to the DHW circuit at 10°C. The DHW outlet temperature remained at the same position, set to achieve 50.0 (±0.5°C) prior to the test.

Based on the results for the DHW response time during test 5b, the HIU does perform a valid keep warm operation.

During the last 3 hours of the test, the average t_{11} temperature was 48.0°C with a maximum of 48.8°C and a minimum of 47.4°C

During test 4b:

- The average heat load during the 8-hour keep warm period was 38 W
- The average primary flow rate during the 8-hour keep warm period was 6.8 l/h
- Details of the scaling risk are given in Table 10

5.6 DHW RESPONSE TIME – 5A AND 5B

5.6.1 Test 5a

Test 5a was carried out immediately after test 4a with all the settings and conditions the same.

During test 5a:

- The DHW temperature did not exceed 65.0°C during the test
- The DHW achieved 45.0°C in 8 seconds from the first recorded non-zero DHW flow reading

Result Scaling risk factor – Pass Achieving 45°C DHW within 15 seconds – Pass

5.6.2 Test 5b

Test 5b was carried out immediately after test 4b with all the settings and conditions the same.

During test 5b:

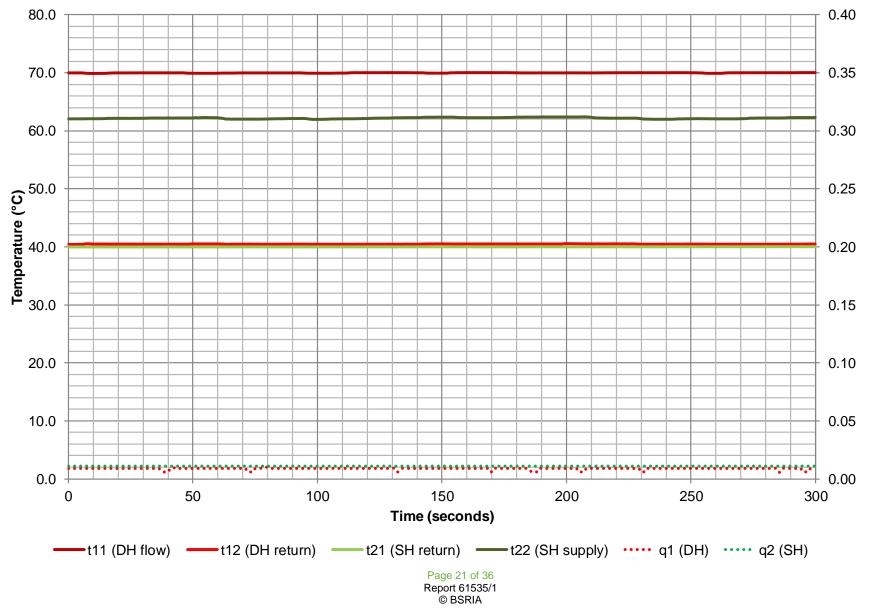
• The DHW achieved 45.0°C in 9 seconds from the first recorded non-zero DHW flow reading

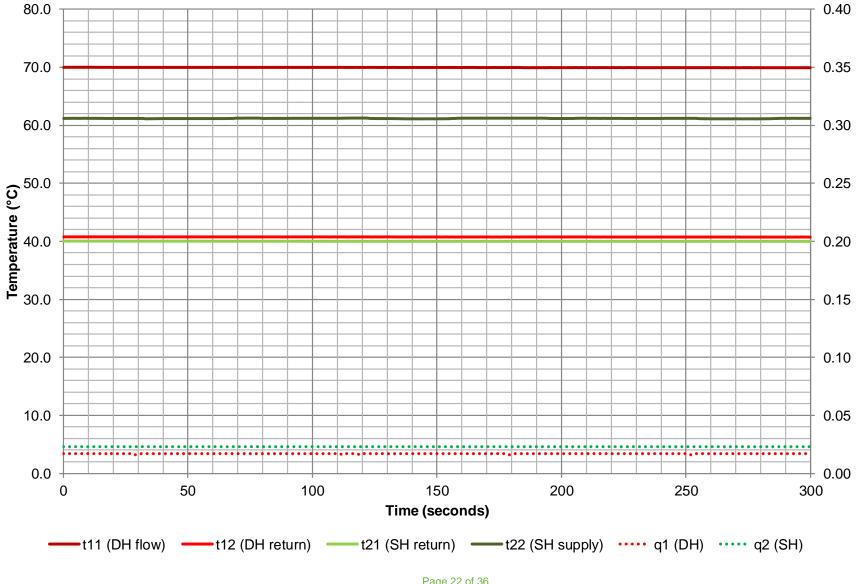
Result Achieving 45°C DHW within 15 seconds – Pass

5.7 TOTAL SCALING RISK ASSESSMENT

The scaling risk criteria is given in section 2.26 of the test regime. Table 10 gives details of the scaling risk associated with this HIU. If any of the factors given in Table 10 occur, then there is an increased scaling risk of the DHW plate in hard water areas.

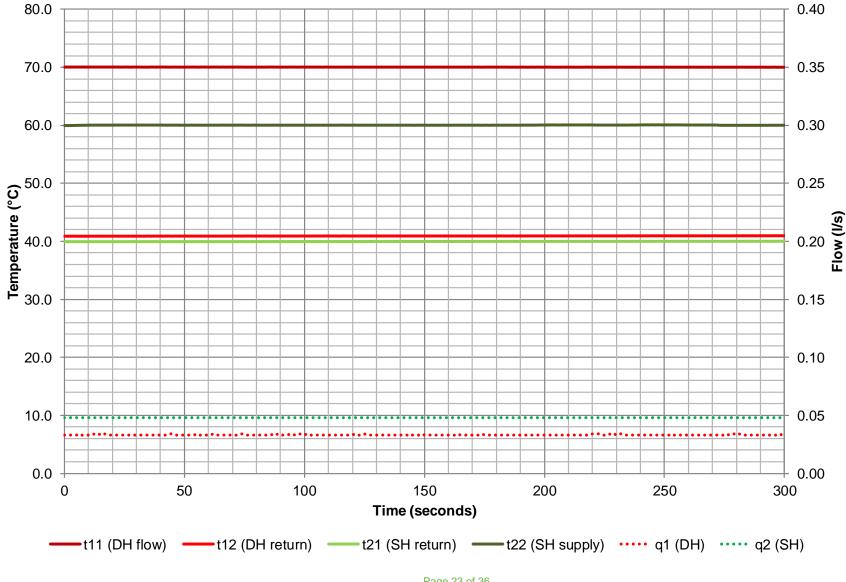
Table 10Total scaling risk assessment

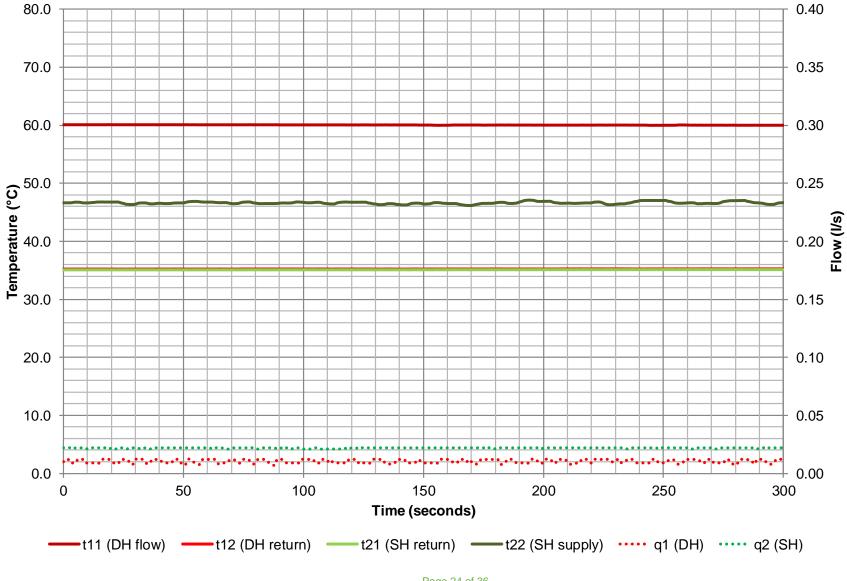

Has the HIU got a TMV or TRV on the output of the DHW plate heat exchanger?	NO NO		
	Test		
	2a	3с	
t ₃₂ above 60°C for more than 5 seconds	No	No	
t ₁₂ exceeds 55°C at any point of the test	No	No	
	4a	4b	
t ₁₂ exceeds 50°C at any time	No	No	


5.8 VOLUME WEIGHTED AVERAGE RETURN TEMPERATURE

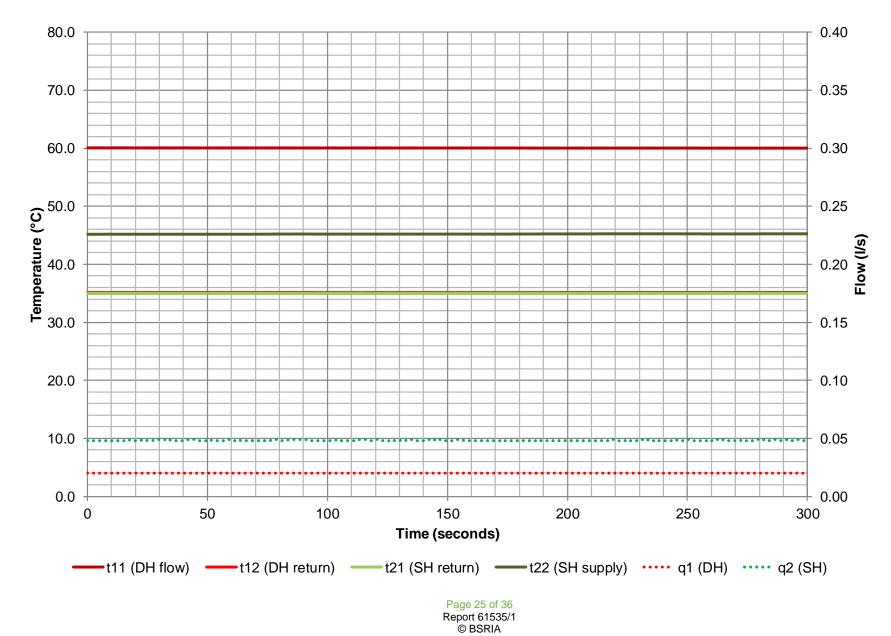
The Volume Weighted Average Return Temperature (VWART) results are given in Appendix B.

APPENDIX A: DATA CHARTS





Page 22 of 36 Report 61535/1 © BSRIA


Figure 5 Results for test 1c: 4kW Space heating – DH 70°C supply

Page 23 of 36 Report 61535/1 © BSRIA

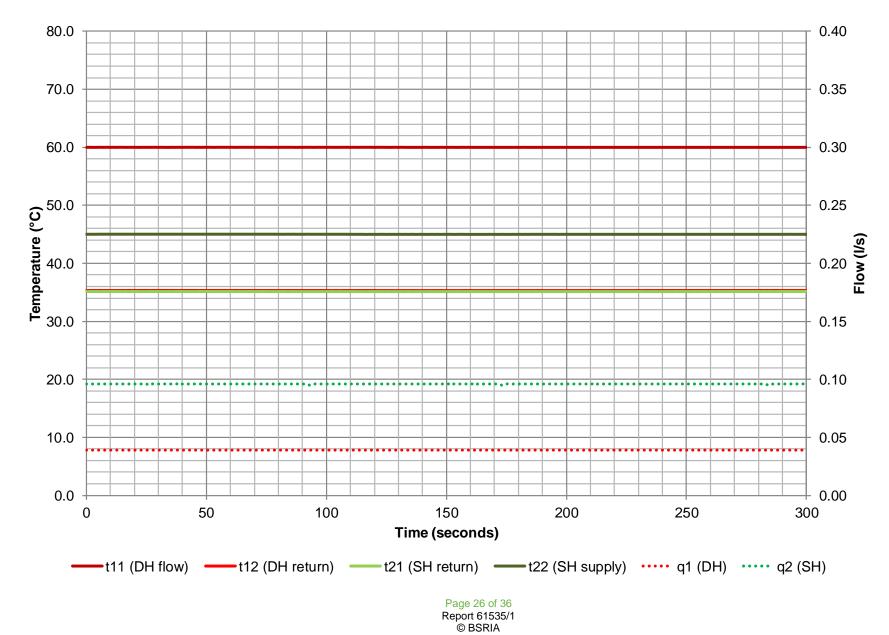


Figure 6 Results for test 1d: 1kW Space heating – DH 60°C supply

Page 24 of 36 Report 61535/1 © BSRIA

Figure 7 Results for test 1e: 2kW Space heating – DH 60°C supply

Figure 8 Results for test 1f: 4kW Space heating – DH 60°C supply

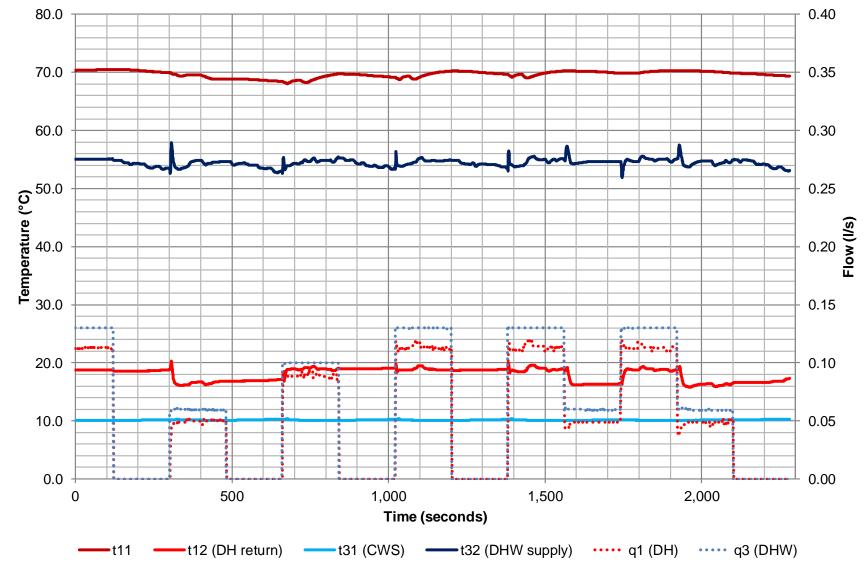


Figure 9 Results for test 2a: DHW dynamic test – DH 70°C

Page 27 of 36 Report 61535/1 © BSRIA

Figure 10 Results for test 2b: DHW dynamic test – DH 60°C

Page 28 of 36 Report 61535/1 © BSRIA

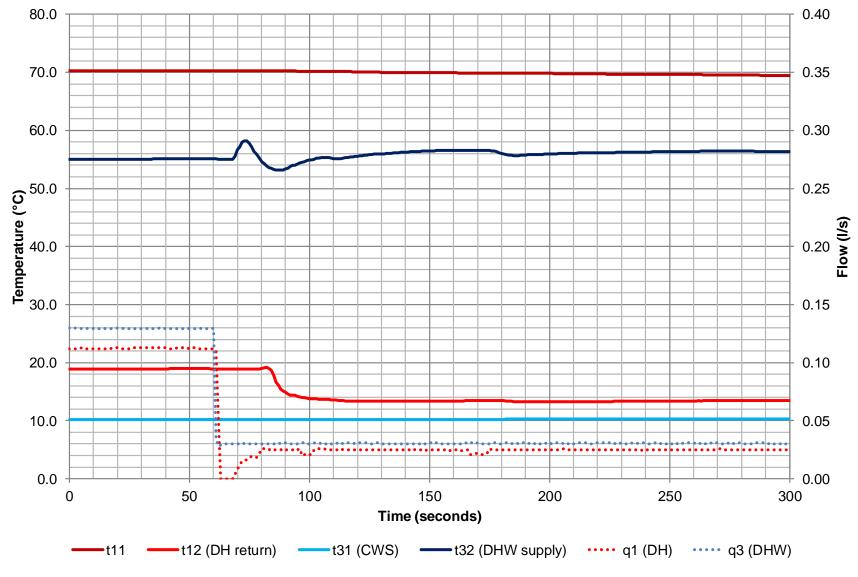


Figure 11 Results for test 3c: Low flow DHW test – DH 70°C

Page 29 of 36 Report 61535/1 © BSRIA

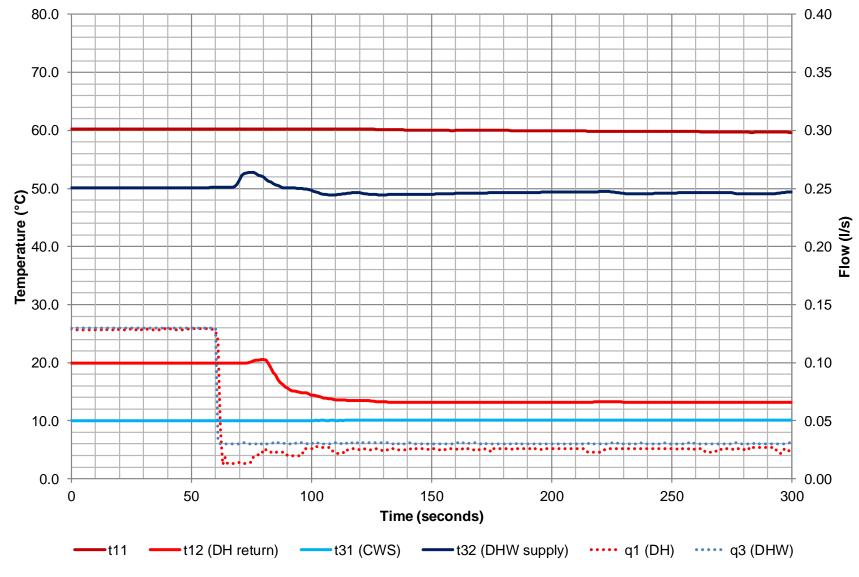
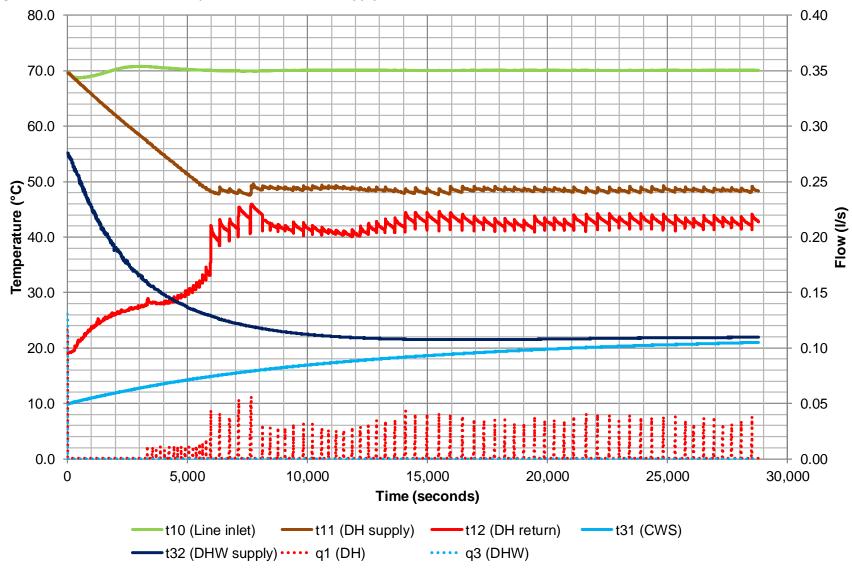



Figure 12 Results for test 3d: Low flow DHW test – DH 60°C

Page 30 of 36 Report 61535/1 © BSRIA

Figure 13 Results for test 4a: Keep warm test – DH 70°C supply

Page 31 of 36 Report 61535/1 © BSRIA

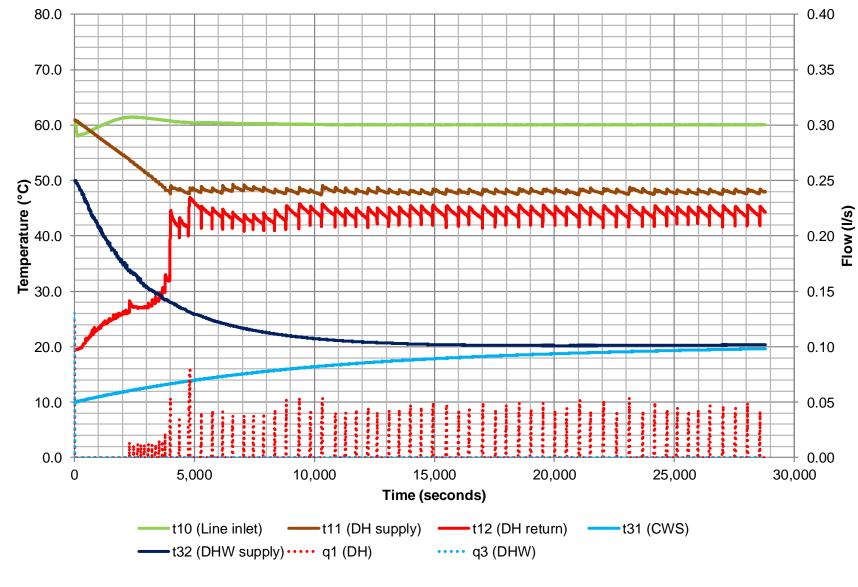


Figure 14 Results for test 4b: Keep warm test – DH 60°C supply

Page 32 of 36 Report 61535/1 © BSRIA

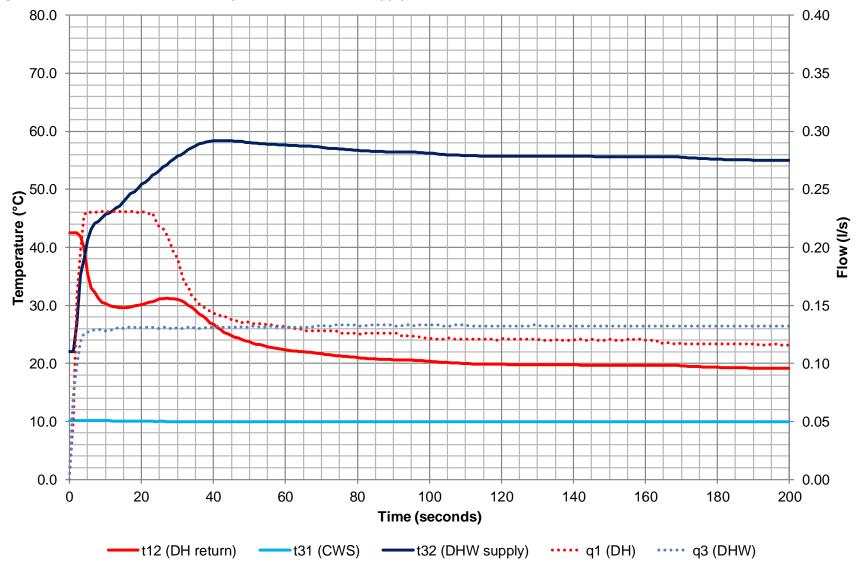


Figure 15 Results for test 5a: DHW response time – DH 70°C supply

Page 33 of 36 Report 61535/1 © BSRIA

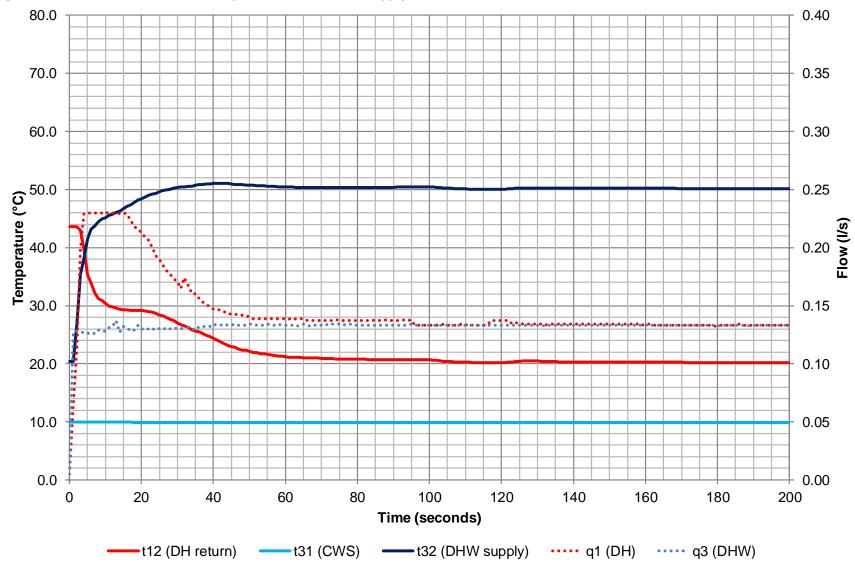


Figure 16 Results for test 5b: DHW response time – DH 60°C supply

Page 34 of 36 Report 61535/1 © BSRIA

APPENDIX B: VWART CALCULATIONS

High Temperature VWART Calculations

High Temperature VWART Calculation for Switch2 Energy Ltd. HIU

Primary flow temperature = 70°C, DHW set point = 55°C, Space heating temperatures = 40°C/60°C Test carried out by BSRIA Ltd. in September 2019, Test Reference 61535/1 Manufacturer: Switch2 Energy Ltd.; Model: T3 ECO PLUS; Serial number: S2HIU19001065; Year of manufacture: 2019 VWART calculation prepared by Colin Judd of BSRIA Ltd. on 19 September 2019

	VWART (°C)	Volume (m ³)	
DHW	18	24.5	
Keep warm	42	31.5	
Space heating	41	43.4	

	VWART with ke	ep warm active
Period	VWART (°C)	% Time
No heating	31	93%
Heating	40	7%
Overall	32	

		DHW draw test	results	Post DHW	Post DHW draw (60 seconds)		DHW draw volumes per annum			Post DHW draw volumes per annum		
	Power	Primary flow	Return temp	Primary flow	Return temp	Energy	Time	Volume	Fuents	Avg duration	Volume	
	(W)	(m³/hr)	(°C)	(m³/hr)	(°C)	(kWh)	(hours)	(m ³)	Events	(seconds)	(m ³)	
Low	10937	0.175	16.6	0.002	16.83	729	66.66	11.681	10000	30	0.150	
Medium	18541	0.317	18.9	0.003	19.02	297	16.02	5.077	660	75	0.045	
High	23941	0.404	18.9	0.002	18.71	444	18.55	7.499	300	145	0.021	

Keep warm test results				
Primary flow	Return temp			
(m³/hr)	(°C)			
0.0039		41.9		

		Space heating test results					
	Power	Power Primary flow Return temp					
	(W)	(m ³ /hr)	(°C)				
1 kW	1020	0.032	40.5				
2 kW	2036	0.061	40.8				
4 kW	4024	0.119	40.9				

Keep warm volumes per annum				
Time	Volume			
(hours)	(m ³)			
8036	31.517			

Space heating volumes per annum				
Energy Time Volume				
(kWh)	(hours)	(m ³)		
98	96.09	3.041		
787	386.63	23.634		
565	140.40	16.748		

Page 35 of 36 Report 61535/1 © BSRIA

Low Temperature VWART Calculations

Low Temperature VWART Calculation for Switch2 Energy Ltd. HIU

Primary flow temperature = 60°C, DHW set point = 50°C, Space heating temperatures = 35°C/45°C Test carried out by BSRIA Ltd. in September 2019, Test Reference 61535/1 Manufacturer: Switch2 Energy Ltd.; Model: T3 ECO PLUS; Serial number: S2HIU19001065; Year of manufacture: 2019 VWART calculation prepared by Colin Judd of BSRIA Ltd. on 19 September 2019

	VWART (°C)	Volume (m ³)
DHW	18	30.5
Keep warm	44	53.9
Space heating	35	51.0

	VWART with keep warm active		
Period	VWART (°C) % Time		
No heating	34 93%		
Heating	35	7%	
Overall	35		

[DHW draw test results		Post DHW draw (60 seconds)		DHW draw volumes per annum			Post DHW draw volumes per annum			
	Power	Primary flow	Return temp	Primary flow	Return temp	Energy	Time	Volume	Fuents	Avg duration	Volume
	(W)	(m³/hr)	(°C)	(m³/hr)	(°C)	(kWh)	(hours)	(m ³)	Events	(seconds)	(m ³)
Low	9734	0.194	17.4	0.002	17.85	729	74.89	14.564	10000	30	0.170
Medium	16299	0.346	19.2	0.003	19.01	297	18.22	6.311	660	75	0.044
High	21297	0.451	19.5	0.005	19.79	444	20.85	9.397	300	145	0.062

Keep warm test results				
Primary flow Return temp				
(m³/hr)	(°C)			
0.0067	43.5			

	Space heating test results					
	Power	Power Primary flow Return temp				
	(W) (m³/hr) (°C)					
1 kW	1053	0.037	35.2			
2 kW	2065	0.072	35.1			
4 kW	3959	0.140	35.3			

Keep warm volumes per annum				
Time Volume				
(hours)	(m ³)			
8029	53.936			

Space heating volumes per annum				
Energy Time Volume				
(hours)	(m ³)			
93.03	3.476			
381.17	27.444			
142.70	20.035			
	Time (hours) 93.03 381.17			